
Recent Developments in DNA-Computing

Diana Rooß
Lehrstuhl für Theoretische Informatik

Universität Würzburg
Am Exerzierplatz 3, 97072 Würzburg, Germany

diana@informatik.uni-wuerzburg.de

Abstract

In 1994 Adleman published the description of a lab ex-
periment, where he computed an instance of the Hamilto-
nian path problem with DNA in test tubes. He initiated
a flood of further research on computing with molecular
means in theoretical computer science. A great number
of models was introduced and examined, concerning their
computional power (universality as well as time and space
complexity), their efficiency and their error resistance. The
main results are presented in this survey.

1 Introduction

The pioneering achievement that every problem can be
computed, providing that one can verbalize a method to
solve it, belongs to the second third of our century. Si-
multanously the answer to the question “how to do it” was
found. The necessary information was encoded binary, and
the code words were implemeted by a sequence of high and
low voltage. This was the beginning of the phenomenal ex-
pansion of computers. A lot of innovations supported its
breakthrough. But the idea to store and modify data by elec-
tronic means has not changed in practice.

The description of a biological experiment caused a sen-
sation among theoretical computer scientists in December
1994. A well-known scientist succeeded in computing the
solution of an instance of a problem recognized to be hard,
by means of biochemical manipulation of DNA (desoxyri-
bonuclein acid): Adleman solved the Hamiltonian path
problem for a graph with seven vertices using a soup of
DNA.

Though in this computation the means of storage was
new the result was not. For a long time it has been possible
to search for Hamiltonian paths in graphs of this size, and
the usual method in this case is much faster than the new one
by Adleman. However, the complexity theoretical analysis
of this experiment indicates that the input length and the

computing time to solve the task are in good proportion.
Adleman’s procedure uses polynomial computing time, but
so far there are only exponential time algorithms known to
compute the Hamiltonian path problem on a sequential ma-
chine, and this does not rank as efficiently computable.

A Hamiltonian path is a sequence of edges in a graph,
which touches every vertice exactly once. The Hamiltonian
path problem is to decide, whether a graph has a Hamilto-
nian path or not. This problem is a typical representative
of the important complexity class NP. That means that it
shares many of its properties, including those mentioned
above, with every problem in NP. Adlemans method has
initiated great interest, as one can hope to learn something
new about all of the problems in NP by analysing this spe-
cial case.

Massively parallel features are the reason for the gain
of time (considering larger inputs). The solution space is
completely coded, each possible solution is mapped to a
DNA molecule. Subsequently some necessary conditions
for a correct solution are checked step by step. In each
of the steps all molecules are modified in parallel: those
molecules that fit to the tested condition are seperated from
those which do not.

A possible solution to the Hamiltonian path problem is
a sequence of the graph’s vertices. There are exponen-
tially many sequences, but each of them has only polyno-
mial length and therefore it differs from other sequences at
most at polynomially many positions. Consequently at most
polynomially many conditions have to be tested. As all pos-
sible solutions are tested in parallel, their huge number is of
no consequence when counting the time.

If we generalize Adleman’s method we get a parallel
model of computation. We view molecules as distributed
data storage and molecular manipulations as parallel opera-
tions. In a test tube a soup of millions of molecules can be
manipulated whereas silicon-based parallel computers are
bounded to about ten thousand processors nowadays.

Such considerations encourage to ask, whether DNA-
computers can break the “exponential border” and there-



fore problems , that are not computable in a practical sense
nowadays (as this would take thousands of years), could
be solved in a sensible time. But simple means of calcu-
lation shows, that Adleman’s procedure would need more
molecules than the earth is able to give, for computing the
Hamiltonian path problem for a graph with two hundred
vertices [23, 34].

It is the task of theoretical computer science to find
out the chances and the borders of the new computational
model. The survey in hand first presents the article that initi-
ated research on molecular computing. We consider the de-
scription of the experiment as well as Adleman’s hopes and
doubts concerning this procedure (Section 2). In Section 3
we explain the first abstractions of Adleman’s method to-
wards a parallel computation model and its complexity the-
oretic analysis. Some more molecular operations and tests
are mentioned which are expected to be realizable. “Is ev-
erything computable by DNA-computers?” We trace this
question in the Section 4. In fact there are different DNA
models that have the power of an universal computer. There
are many problems which can only be solved with the ma-
chines of the preceeding sections taking great consumption
of time and DNA resourses into the bargain. The efficient
algorithms of the fifth section for example reduce the con-
sumption of molecules considerably, compared with naive
methods. In Section 6 we face the objection that molecular
operations are probabilistic – so error analysis and strategies
for error resistence are necessary. Finally (Section 7) we
present a research area from the theory of formal languages:
splicing systems model a biological prototype where DNA
molecules are reorganized by the means of enzymes and
ligation. Many classes of languages can be characterized
by different modifications of splicing systems.

Adleman’s article caused a flood of further research work
in various aspects and developments of molecular models.
For that reason it is impossible to give a complete state of
research in this presentation. Instead we select some pa-
pers which seem to be interesting to us and which afford
an insight into the ways research on molecular computing
has taken. For clearing the basics of theoretical computer
science we recommend for example [49].

2 Adleman’s Experiment

In a well-noticed article from December 1994 Adleman
describes a completely new process for solving a combi-
natorial problem that he performed for an examplary in-
put in lab [1]. He takes the NP-complete Hamiltonian path
problem as representative of an important complexity class
which is supposed to have exponential worst case time com-
plexity.

Let
�

be a graph with � vertices, where vertices ����� and
���
	�� are marked.

�
is called to have a Hamiltonian path

from �
��� to ���
	�� if there is a path of edges starting with
�
��� and ending with ����	�� that contains every vertice of

�
exactly once. The directed Hamiltonian path problem is the
set of tuples � ��� � ��� � � �
	��
� where

�
has a Hamiltonian path

from � ��� to � ��	�� .
Adleman uses the following (nondeterministic) algo-

rithm to solve the directed Hamiltonian path problem for
an input � ��� � ��� � � ��	���� .

1. Generate random paths in
�

.

2. Extract all paths beginning with ����� and ending with
����	�� .

3. Extract all paths with length exactly ����� .
4. Extract all paths that contain every vertice at most

once.

5. Accept if there are any paths left, otherwise reject.

Those steps are now realized as molecular computation
phases. Vertices and edges of

�
are coded by DNA poly-

mers. Ligation builds DNA strands that represent random
paths in

�
(step 1). The Watson-Crick complements of the

codings of ����� and ���
	�� are used to extract the strands with
the correct beginning and end (step 2). In order to get cod-
ings of length ����� we seperate the strands in agarose gel
(step 3). Next we denaturate the DNA, and we check each
vertice (using the Watson-Crick complement of its coding)
for only single appearance in a path (step 4). To get the
result, again we use gel electrophorese for testing whether
there is any strand left or not (step 5). In between the steps
polymere chain reaction (PCR) is used to amplify the inter-
mediate results.

The execution of the experiment took seven days of lab
work. But Adleman remarks that optimizing the algorithms
and the molecular implementation of the operations can re-
duce the time substantially. However, the time used for
longer inputs grows only linearly with the number of ver-
tices. On the other hand the number of different paths grows
exponentially with the number of vertices – and so does the
amount of DNA. Adleman himself poses some questions.
He consideres that the proceeding has probabilistic proper-
ties. That means it has to be examined how many equal
strands must be initialized, to reach high probability for the
existence of at least one of the required coding in every step.
All together careful error analysis and the examination of
the realizability of the method is necessary [2, 28].

For all that Adleman rates the potential of his DNA
model to be promissing. While modern supercomputers
perform ������� operations per second, he estimates �����
 op-
erations per second to be realistic for molecular manipula-
tions. Similar impressive views concern the consumption of
energy and the capacity of memory: supercomputers need



one joule for ��� � operations, whereas the same energy is
sufficient to perform

��� ��� � � ligation operations. On a
videotape every bit needs ��� �
� cubic nanometres storage;
DNA stores information with a density of one bit per cubic
nanometre (also see [6]).

It depends on future research whether the prototype of
a reliable bio-computer or even industrial mass production
will be reality. However, Adleman got an avalanche under-
way.

3 First Reactions

The first who takes up Adleman’s method is Lipton
[30, 32]. He makes some idealized assumptions and gets
a deterministic parallel computation model. The molecular
operations union, initialization, extraction, and amplifica-
tion and an emptiness test are applicable on DNA in test
tubes. By that he builds an abstraction of the molecular
computation in Adleman’s experiment. The main results of
those papers are a concrete DNA algorithm for the 3-SAT
problem and the proof that any problem in NP can be solved
in polynomial time using his model.

Inspired by Lipton’s abstraction Rooß and Wagner pick
up his model and expand it with other molecular operations
and tests that are supposed to be realizable [43, 44]. For
the exact definition of the operations refer to the original
articles, because the computational power depends on a few
properties. In detail we can categorize the operations as
follows.

� Operations have the block property if they preserve the
fact that all strands of a certain length are contained in
a test tube or none of them;

� Operations have the select property if they can exclude
certain strands from a test tube (and probably modify
the remaining);

� Operations have the identify property if they can iden-
tify different strands (i. e. by identifying or cutting cer-
tain symbols or substrings).

We call the operations with the block property block op-
erations, those with the select property select operations
and those with the identify property identify operations. A
non-block operation does not have block property, an opera-
tion with the identify and the block property is called simple
identify operation.

Lipton uses the emptiness test (EM) that is true, if there
are no strands in a test tube in question. Additionally we
examine another two DNA tests: The membership test (ME)
is true, if there is a certain strand in the test tube in question;
the subset test (SU) is true, if the contents of a certain test
tube is as a subset in the test tube in question.

To construct an algorithm for the model, on the one hand
the set of commands of classical Pascal, on the other hand
a set of molecular operations and tests are allowed. Some
variants of this DNA-Pascal are inspected, they differ in the
set of valid molecular operations and tests. If we bound the
resulting programming languages to polynomial computing
time, they define different problem classes that can be char-
acterized by classical complexity classes. The pure Pascal
commands do not influence the magnitude of those classes
because polynomially time-bounded Pascal exactly charac-
terizes the class P.

We can summarize the results of [44] in the following
figure. The vertices of the graph are combinations of op-
eration properties. A tabular is attached to each of the ver-
tices. It shows the computational power of polynomially
time-bounded DNA-Pascal using operations with the prop-
erties in the vertices and different tests.

non-block,
neither select nor

non-block identify

non-block identify,
no select

select and
identify

select,
no identify

SUEMME

SUEMME

SUEMME

SUEMME

P P P

SUEMME

P �����	�

� ��

PP

P

� � 


� � 


� � 
 � � 


� � 


block

If only block operations are used no molecular test can
increase the power of polynomially time-bounded DNA-
Pascal above P. Non-block operations without select prop-
erty and at most simple identify operations lift polynomially
time-bounded DNA-Pascal to the magnitude of �
� � ������� .

The select property seems to turn the scale for the power
of EM: with select operations and EM (or SU) polynomially
time-bounded DNA-Pascal is as powerful as ��� � . (Lipton’s
model can be classified at this point, its power is exactly
characterized by ��� � .) Without select operation EM does
not have an influence on the power of the programming lan-
guage.

A non-block identify operation lifts the power to ��� � if
ME is allowed – with SU the power is ���� . We get the same
effect if only simple identify operations but additionally se-
lect operations are valid.

There are other operations which raise the power of Lip-
ton’s model even to PSPACE. If the strands are logarithmi-



cally length-bounded then DNA-Pascal with Lipton’s oper-
ations and test is exactly characterized by the class L [43].

4 Universal Computers

The term universal computer originates from recursion
theory and describes a machine that is able to solve any
computable problem. As an input it obtains a program
which implements an algorithm for solving a computable
problem, and a parameter for that program. There are many
equal models which fit for a universal computer. Probably
the Turing machine is the most important one. Each Turing
computation is represented by a sequence of configurations.
Each configuration encodes a single step in the computa-
tion. Successor configurations differ only at a few locally
bounded positions. A Turing machine accepts an input, if
there is a sequence of successor configurations that begins
with the start configuration and ends with the accepting con-
figuration. The commonly accepted Thesis of Church says
that any intuitively computable problem is computable by
a Turing machine. According to these standards every new
computational model is going to be examined whether it is
an universal computer or not.

Beaver describes a molecular universal computer in [10]:
he simulates a Turing machine by coding all its configu-
rations in DNA strands. During that he starts with pairs
of successor configurations. Similar to the dominoes game
(where one chain of dominoes must be put together) longer
and longer parts of the computation grow (in parallel) by
clever recombination of these strands. Finally it is to check,
whether there is a strand with the coding of the start con-
figuration in the beginning and the accepting configuration
in the end. In [45, 51] similar ligation-based methods are
proposed to simulate Turing machines. From [43] it fol-
lows that without time bounds Lipton’s model can already
process any computable problem.

5 DNA Algorithms

Adleman’s and Lipton’s naive algorithms for the Hamil-
tonian path and the 3-SAT problem, are valuable contribu-
tions to the analysis of the computational power of those
machines. But it appears that only small inputs can be pro-
cessed in reality. The problem is the extend of solution
spaces of order

� � , where � is the input length. Indeed we
can not expect to reduce the solution space for such prob-
lems to polynomial size with optimized algorithms because
this would imply the equality of P and NP [43], nevertheless
the number of the actually computable instances grows con-
siderably. Bach, Condon, Glaser, and Tanguay [5] present
clever algorithms that use Adleman’s operations and test.
For example they reduce the DNA consumption to an or-
der of � � � � � while computing the NP-complete Independent

Set problem. Ogihara utilizes the Monien-Speckenmeyer
algorithm to construct a DNA algorithm for 3-SAT that in-
creases the maximal input length from � � (specified by Lip-
ton) to � � � [35]. Nature has a method to comb huge so-
lution spaces: repeated selection cycles on much smaller
subspaces. Dynamical programming picks up this idea to
reduce the number of required DNA strands [48, 8].

Moreover, there are several other algorithms for famous
difficult problems. E. g. the #P-complete problem of per-
mantent calculation in a matrix is solved in [50, 29] by a
DNA algorithm.

Not only the decision of sets with DNA computation is of
interest. If molecular models want to compete with silicon-
based models, the computation of functions must be pos-
sible. Within that the addition plays an important part; a
corresponding DNA algorithm is presented in [22]. Molec-
ular matrix multiplication is the theme in [37] and a quite
early paper by Beaver deals with a factorisation algorithm
[9].

Boolean circuits are one of the profound studied parallel
computation models. Their processors are gates that exe-
cute the boolean functions “not”, “and” and “or”. The com-
plexity of those circuits are given by the fan-in and fan-out
(the maximal number of inputs and outputs, resp. of a gate),
the size (the number of gates) and the depth (the longest
way through the circuit). Often the fan-in of and-gates is
bounded to two whereas the fan-in of or-gates is arbitrary;
such circuits are called semi-unbounded. The simulation of
boolean circuits by DNA-computers is among others exam-
ined in [31, 12, 27]. Ogihara and Ray [36] specify a molec-
ular algorithm that simulates semi-unbounded boolean cir-
cuits of depth � and size � in time � �����
	���
 � and DNA con-
sumption � ����
 � , where 
 is the fan-out of a circuit. In
particular this makes it possible to run the simulation of the
important circuit class ��� � in time linear to the depth of
the circuits.

DNA molecules in solution have an alternative in DNA
molecules that are fixed to a surface. Liu et al. [33] take in
that biochemical method and develop a molecular compu-
tation model to simulate circuits efficiently (the number of
parallel operations is proportional to the size of the circuit)
[14].

Another possible application of molecular computers is
cryptography. In [11] it is outlined how to break the data
encription standard (DES) with Adleman’s model extended
with some more operations. DES codes information with
a
���

bit key. For an input pair of cipher text and plain
text a classical algorithm had to sequentially test

�����
pos-

sible keys, what takes some ten thousand years assuming
a performance of hundred thousand operations per second.
Boneh, Dunworth and Lipton show how to compute the key
in about four month of lab work. The sticker model by
Roweis, Winfree et al. is a computation model that com-



bines DNA manipulations and a random access memory
[46]. With one gram of DNA and in spite of many error
possibilities DES can be broken by the sticker model in rea-
sonable time [3].

6 Error Resistance

Most of the models mentioned above base on idealized
assumptions, in particular deterministic working methods
of molecular operations and tests. Indeed the analysis of
the biochemical process as well as the repetition of Adle-
man’s experiment that could not deliver definite results [26]
let the realization of those assumptions seem to be difficult.
The upper bounds of molecular computation models with
perfect operations and tests show limits that surely can not
be broken by realistic implementation. Nevertheless a pro-
found error analysis and strategies for error resistance help
to improve classification of these models and to give state-
ments according their realizability.

The implementation of the extraction operation with
PCR (as for example in [1]) throw doubts on the finite result
of a computation. If we assume PCR to extract the proper
strands with a probability of

� ���
, and we undergo only one

hundred computation steps, then the probability that exactly
those strands are left which meet the extraction criterion is
nothing but � � ��� ��� [4]. Instead of that Amos, Gibbons,
and Hodgeson implement the extraction operation with the
means of restriction enzymes that destroy all strands con-
taining a certain pattern. They reach a distinctly lower error
probability than with the use of PCR. The reliability of the
extraction operation can also be increased with a proceed-
ing by Karp, Kenyon, and Waarts [27]: they apply PCR to
a series of test tubes instead of only one. Boneh and Lipton
[13] make their 3-SAT algorithm error resistant by duplicat-
ing the number of strands periodically.

Among the first to be engaged in the error analysis
of Adleman’s and Lipton’s operations are Bach, Condon,
Glaser, and Tanguay [5]. They increase the probability so
when duplicating test tubes indeed all different strands are
in both of the tubes, by using a greater amount of equal
molecules.

In [7] Baum is concerned with the coding of strings in
DNA strands. Using strands of sufficent length it can hap-
pen that randomly complementary strands join and so cause
errors. A clever string coding takes remedial measures.

7 Splicing Systems

Finally we should not miss to consider a related disposi-
tion from the theory of formal languages. An article of Head
from 1987 [24] leads this concurrency off. He constructs
a language theoretical model after a biological example: a

language is given by a test tube filled with DNA and a num-
ber of valid operations (realizable with certain enzymes).
It consists of mulecular coded strings – the molecules are
from the initial set or come off it by enzyme reactions. The
formalization of this idea is called splicing system, consist-
ing of an initial set of strings on a final alphabet and a rule
set of four tuples � � �

� � ����� �
�
� � � of strings over that alpha-

bet. The rules are applied on two strings � and � at a time.
If � contains the pattern � � � � and � the pattern � � � � , a
new string � is produced, beginning like � including � � and
ending like � from � � on.

�

	 


��� � 


	 
	 �

The language generated by a splicing system is the set of
all strings that can be produced by a repeated application of
the rules on the initial set. In the theory of formal languages
two classes of languages have a great importance: the class
of regular languages that is easy to decide and the class of
recursively enumerable languages (r. e.) that not only con-
tains the decidable but also the semi-decidable languages.

Splicing systems have profoundly been investigated. The
generative power of splicing systems is examined among
others in [24, 38, 40, 41, 21]. Culik and Harju show that
a splicing system with regular initial set and finite set of
rules generates again only regular sets [17]. But if we allow
a regular set of rules, then the set of generated languages
is already r. e. [39]. Denninghoff an Gatterdam introduce
the multiplicity of strings in sets [19]: the appearence fre-
quency of a string in a set is considered. By this means we
implicitely get the possibility to add, subtract and multiply
integers. If the multiplicity of sets is treated, splicing sys-
tems with a finite set of rules can already generate r. e. Also
the existence of a “universal computer” in form of a splicing
system is proved: there are universal splicing systems that
can simulate the working method of any arbitrary splicing
system, and they can have regular rule sets or finite rule sets
with multiplicity or with an adding mechanism [19, 39, 15].
That means in particular that splicing systems have the same
power as Turing machines.

A variation to linear structures as presented above are
splicing systems on circular strings without beginning or
end. In [25, 47, 42, 52] such cyclic splicing systems are con-
sidered, and it turns out that in this case the result of Culik
and Harju does not hold [47]. Some extensions enable the
construction of universal splicing systems with finite sets of
rules that do not need mulitiplicity [52]. Freund looks at
splicing systems on graphs in [20].



A combination of splicing systems with the meaning
of Head (splicing operations are applied in test tubes) and
DNA-computers in the sense of Adleman (new test tubes are
filled by extraction from old ones) are examined in [16, 18].
Those distributed splicing systems with finite initial and rule
set already characterize r. e. On its base a universal com-
puter can be constructed, too.

8 Final Remark

During the last two and a half years many different DNA
models have been developed and analysed under several
points of view. It turned out to be quite fruitful that many re-
searchers with different interests have picked up that theme.
Thereby complexity, stability and realizabilty played an im-
portant part.

Even though this chapter of research is still in the begin-
ning. The results up to now show, that DNA-computers will
not turn our insights of efficient computation from upside
down. Nevertheless they are a powerful instrument for the
implementation of parallel processes.

The future of molecular machines could be in a combi-
nation with classical computers. Such systems should profit
by the specific suitability of the components: well paralliz-
able tasks should be computed with DNA, whereas inher-
ently sequential jobs should be done by silicon-based chips.
It is still too early to expect high efficient realizations, but
also in biology a unremittingly search for possibilities for a
quick and low cost manipulation of molecules is in process.

References

[1] L. M. Adleman. Molecular computation of solutions to com-
binatorial problems. Science, 266:1021–1024, December
1994.

[2] L. M. Adleman. On constructing a molecular computer. In
E. B. Baum and R. J. Lipton, editors, DNA based comput-
ers. American Mathematical Society, 1996. Number 27 in
DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science.

[3] L. M. Adleman, P. W. K. Rothemund, S. Roweis, and
E. Winfree. On applying molecular computation to the data
encryption standard. In Proceedings of the Second Annual
Meeting on DNA based Computers, 1996.

[4] M. Amos, A. Gibbons, and D. Hodgson. Error-resistant im-
plementation of DNA computations. In Proc. of 2nd Annual
Meeting on DNA Based Computers, June 1996.

[5] E. Bach, A. E. Condon, E. Glaser, and C. Tanguay. DNA
models and algorithms for NP-complete problems. In
Proc. of 11th Conference on Computational Complexity,
pages 290–299, 1996.

[6] E. B. Baum. Building an associative memory vastly larger
than the brain. Science, 268:583–585, April 1995.

[7] E. B. Baum. DNA sequences useful for computation. Tech-
nical report, NEC Research Institute, 1996.

[8] E. B. Baum and D. Boneh. Running dynamic programming
algorithms on a DNA computer. In Proceedings of the Sec-
ond Annual Meeting on DNA based Computers, 1996.

[9] D. Beaver. Computing with DNA. Journal of Computational
Biology, 2(1):1–8, 1995.

[10] D. Beaver. Molecular computing. Technical report, Penn
State University, January 1995.

[11] D. Boneh, C. Dunworth, and R. J. Lipton. Breaking DES us-
ing a molecular computer. Technical report, Princeton Uni-
versity, 1996.

[12] D. Boneh, C. Dunworth, R. J. Lipton, and J. Sgall. On the
computational power of DNA. Technical report, Princeton
University, 1995.

[13] D. Boneh and R. J. Lipton. Making DNA computers error
resistant. Technical report, Princeton University, 1996.

[14] W. Cai, A. E. Condon, R. M. Corn, E. Glaser, Z. Fei,
T. Frutos, Z. Guo, M. G. Lagally, Q. Liu, L. M. Smith, and
A. Thiel. The power of surfaced-based DNA computation.
Technical report, University of Wisconsin, July 1996.

[15] E. Csuhaj-Varjú, R. Freund, L. Kari, and G. Păun. DNA
computation based on splicing: universality results. In Pro-
ceedings of the First Annual Pacific Symposium on Biocom-
puting, 1996.

[16] E. Csuhaj-Varjú, L. Kari, and G. Păun. Test tube distributed
systems based on splicing. Computers and AI, 15(2–3):211–
232, 1996.

[17] K. Culik II and T. Harju. Splicing semigroups of domi-
noes and DNA. Discrete Applied Mathematics, 31:261–277,
1991.

[18] J. Dassow and V. Mitrana. Splicing grammar systems. Com-
puters and AI, 15(2–3), 1996.

[19] K. L. Denninghoff and R. W. Gatterdam. On the undecid-
ability of splicing systems. International Journal of Com-
puter Mathematics, 27:133–145, 1989.

[20] R. Freund. Splicing systems on graphs. In Proceedings of
Intelligence in Neural and Biological Systems, pages 189–
194, May 1995.

[21] R. W. Gatterdam. Splicing systems and regularity. Interna-
tional Journal of Computer Mathematics, 31:63–67, 1989.

[22] F. Guarnieri, M. Fliss, and C. Bancroft. Making DNA add.
Science, 273:220–223, July 1996.

[23] J. Hartmanis. On the weight of computations. Bulletin of
th European Association for Theoretical Computer Science,
55:136–138, February 1995.

[24] T. Head. Formal language theory and DNA: an analysis of
the generative capacity of specific recombinat behaviours.
Bulletin of Mathematical Biology, 49:737–759, 1987.

[25] T. Head. Splicing schemes and DNA. Nanobiology, 1:335–
342, 1992.

[26] P. D. Kaplan, G. Cecchi, and A. Libchaber. Molecular com-
putation: Adleman’s experiment repeated. Technical report,
NEC Research Institute, 1995.

[27] R. Karp, C. Kenyon, and O. Waarts. Error resilent DNA
computation. Technical report, École Normale Supérieure
de Lyon, September 1995.

[28] S. A. Kurtz, S. R. Mahaney, J. S. Royer, and J. Simon. Active
transport in biological computing (preliminary version). In
Proceedings of the Second Annual Meeting on DNA based
Computers, 1996.



[29] T. H. Leete, M. D. Schwartz, R. M. Williams, D. H. Wood,
J. S. Salem, and H. Rubin. Massively parallel DNA compu-
tation: Expansion of symbolic determinants. In Proceedings
of the Second Annual Meeting on DNA based Computers,
1996.

[30] R. J. Lipton. Speeding up computations via molecular biol-
ogy. Technical report, Princeton University, 1994.

[31] R. J. Lipton. DNA solution of hard computational problems.
Science, 268:542–545, April 1995.

[32] R. J. Lipton. Using DNA to solve NP-complete problems.
Technical report, Princeton University, 1995.

[33] Q. Liu, Z. Guo, A. E. Condon, R. M. Corn, M. G. Lagally,
and L. M. Smith. A surface-based approach to DNA com-
putation. In Proceedings of the Second Annual Meeting on
DNA based Computers, 1996.

[34] D. A. Mac Dónaill. On the scalability of molecular compu-
tational solutions to NP problems. The Journal of Universal
Computer Science, 2(2):87–95, February 1996.

[35] M. Ogihara. Breadth first search 3SAT algorithms for DNA
computers. Technical report, University of Rochester, July
1996.

[36] M. Ogihara and A. Ray. Simulating boolean circuits on a
DNA computer. Technical report, University of Rochester,
August 1996.

[37] J. S. Oliver. Computation with DNA-matrix multiplication.
In Proceedings of the Second Annual Meeting on DNA based
Computers, 1996.

[38] G. Păun. On the power of the splicing operation. Interna-
tional Journal of Computer Mathematics, 59:27–35, 1995.

[39] G. Păun. On the splicing operation. Discrete Applied Math-
ematics, 70(1):57–79, September 1996.

[40] G. Păun. Regular extended H systems are computationally
universal. Journal of Automata, Languages and Combina-
torics, 1(1):27–36, 1996.

[41] G. Păun, G. Rozenberg, and A. Salomaa. Computing by
splicing. Theoretical Computer Science, 168(2):321–336,
1996.

[42] D. Pixton. Linear and circular splicing systems. In Proceed-
ings of Intelligence in Neural and Biological Systems, pages
181–188, May 1995.

[43] D. Rooß and K. W. Wagner. On the power of bio-computers.
Technical report, Universität Würzburg, February 1995.

[44] D. Rooß and K. W. Wagner. On the power of DNA comput-
ing. Information and Computation, 131(2):95–109, Decem-
ber 1996.

[45] P. Rothemund. A DNA and restriction enzyme implemen-
tation of Turing machines. In E. B. Baum and R. J. Lip-
ton, editors, DNA based computers. American Mathematical
Society, 1996. Number 27 in DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science.

[46] S. Roweis, E. Winfree, R. Bourgoyne, N. V. Chelyapov,
M. F. Goodman, P. W. K. Rothemund, and L. M. Adleman.
A sticker based architecture for DNA computation. In Pro-
ceedings of the Second Annual Meeting on DNA based Com-
puters, 1996.

[47] R. Siromoney, K. G. Subramanian, and V. R. Dare. Circu-
lar DNA and splicing systems. In Proceedings of the 2nd
International Conference on Parallel Image Analysis, pages
260–273, 1992.

[48] W. P. C. Stemmer. The evolution of molecular computation.
Science, 270:1510, December 1995.

[49] K. W. Wagner. Einführung in die Theoretische Informatik,
Grundlagen und Modelle. Springer-Verlag, 1994.

[50] R. M. Williams and D. H. Wood. Exascale computer al-
gebra problems interconnect with molecular reactions and
complexity theory. In Proceedings of the Second Annual
Meeting on DNA based Computers, 1996.

[51] E. Winfree. On the computational power of DNA annealing
and ligation. In E. B. Baum and R. J. Lipton, editors, DNA
based computers. American Mathematical Society, 1996.
Number 27 in DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science.

[52] T. Yokomori, S. Kobayashi, and C. Feretti. On the
power of circular splicing systems and DNA computabil-
ity. Technical Report CSIM 95-01, University of Electro-
Communications, Tokyo, July 1995.


